ISTF/5 - SP/02 Agenda Item 4b 16/02/15

GBAS Brazilian Ionospheric Threat Model Project

New Verification Methodology of Ionospheric Gradients Observed in the Brazilian Region

ICAO ISTF/5 16 – 18 February, 2015

Motivation and Goal

- A Honeywell SLS-4000 GBAS ground facility installed at the Galeão International Airport in Brazil is configured with the Conterminous U.S (CONUS) threat model.
- Ionospheric activity in equatorial regions (within 25 degrees latitude of the geomagnetic equator) is known to be significantly more variable and more intense than what is encountered in mid-latitude regions such as CONUS.
- Goal: Develop a new model for Brazil

CONUS Threat Model

Max. Front slope (mm/km)	Low elevation (<15°)	375
	Medium elevation (15° <el<65°)< td=""><td>375+50(e1-15)/50</td></el<65°)<>	375+50(e1-15)/50
	High elevation (>65°)	425
Front width (km)	25 – 200	
Front speed (m/s)	0 – 750	
Max. differential delay (m)	50	

Data Processing Efforts and Findings

- Government/Industry Project
 - Project conducted as an international, interagency effort with a variety of funding sources
 - Team DECEA, ICEA, INPE, FAA Tech Center, Stanford, Boston College, NAVTAC, Mirus, KAIST.
- Identified 120+ active ionosphere days during the peak of the current solar cycle (March 2011 – April 2014).
 - 85 scintillating, 8 non-scintillating, 7 storm days (based on Kp), 27 days identified by INPE (based on Dst)
- Threat points generated from LTIAM processing
 - 35 points > 500 mm/km, 5 points > 600 mm/km
 - Max. gradient > 800 mm/km

Preliminary Results: Brazilian Threat Model

The threat points are verified through the normal LTAIM procedure. However, the second phase of validation is required to confirm those are actual ionospheric events

SAVO-SSA1 PRN 21

Second-phase Validation Methods

- Station-wide Validation
 - Requires nearby stations
 - The sparse network stations in Brazil limits the use of this method

Satellite-wide Validation

- Required other satellites

Time-step method (New)

- Does not need additional stations or satellites
- Spatial gradients and Temporal gradients are mixed together

Station-pair method

Limitation in the Brazilian region

• A spatial gradient of 501.2 mm/km was observed from the station pair, SAVO-SSA1, tracking PRN 21.

Limitation in the Brazilian region

Limitation in the Brazilian region

 Nearby stations in Brazil are not close enough to validate smallscale (in width) ionospheric anomaly (e.g. EPBs)

Time-Step Method

Time-Step Validation

Time-Step Validation

Time-Step Validation

Regional lonospheric Map 22:30:00 UT

Regional lonospheric Map 23:00:00 UT

Regional lonospheric Map 23:40:00 UT

Regional lonospheric Map 00:15:00 UT (001/2014)

Filtered Code-based Ionospheric Delay Estimates

Time-Step-Method-Based Ionospheric Slopes

Summary

- The comprehensive analysis supports that multiple satellite-station pairs were impacted by the same EPB in different times and locations
 - visualize the severe gradient events in time series in conjunction with the IPP tracks, the motion of EPB, and the location of stations
 - the extreme ionospheric gradient candidate of our interest is finally validated to be real
- Gradients above 500 mm/km should be validated using the proposed methodology while developing an ionospheric anomaly threat model for GBAS operation in the Brazilian region